Leveraging User-specified Metadata to Personalize Image Search

نویسنده

  • Kristina Lerman
چکیده

The social media sites, such as Flickr and del.icio.us, allow users to upload content and annotate it with descriptive labels known as tags, join special-interest groups, etc. We believe user-generated metadata expresses user’s tastes and interests and can be used to personalize information to an individual user. Specifically, we describe a machine learning method that analyzes a corpus of tagged content to find hidden topics. We then these learned topics to select content that matches user’s interests. We empirically validated this approach on the social photo-sharing site Flickr, which allows users to annotate images with freely chosen tags and to search for images labeled with a certain tag. We use metadata associated with images tagged with an ambiguous query term to identify topics corresponding to different senses of the term, and then personalize results of image search by displaying to the user only those images that are of interest to her.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Personalizing Image Search Results on Flickr

The social media site Flickr allows users to upload their photos, annotate them with tags, submit them to groups, and also to form social networks by adding other users as contacts. Flickr offers multiple ways of browsing or searching it. One option is tag search, which returns all images tagged with a specific keyword. If the keyword is ambiguous, e.g., “beetle” could mean an insect or a car, ...

متن کامل

Stipulated Ranking Technique for Image Search Engines

The social media sites, such as Flickr and del.icio.us, allow users to upload content and annotate it with descriptive labels known as tags, join special-interest groups, etc. We believe user-generated metadata expresses user’s tastes and interests and can be used to personalize information to an individual user. Specifically, we describe a machine learning method that analyzes a corpus of tagg...

متن کامل

Similarity measurement for describe user images in social media

Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...

متن کامل

Automated Metadata in Multimedia Information Systems: Creation, Refinement, Use in Surrogates, and Evaluation

Improvements in network bandwidth along with dramatic drops in digital storage and processing costs have resulted in the explosive growth of multimedia (combinations of text, image, audio, and video) resources on the Internet and in digital repositories. A suite of computer technologies delivering speech, image, and natural language understanding can automatically derive descriptive metadata fo...

متن کامل

Ontogator: Combining View- and Ontology-Based Search with Semantic Browsing

We show how the benefits of the view-based search method, developed within the information retrieval community, can be combined and extended with the benefits of ontology-based annotations and search, developed within the Semantic Web community. As a proof of the concept, we have implemented an ontologyand view-based image retrieval and recommendation browser Ontogator. Ontogator is innovative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010